Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 446
Filter
1.
Brain ; 147(2): 680-697, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37831655

ABSTRACT

Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.


Subject(s)
Cortical Spreading Depression , Epilepsy , Migraine Disorders , Migraine with Aura , Mice , Animals , Migraine with Aura/genetics , Mice, Transgenic , Calcium Channels, N-Type/genetics , Calcium/metabolism , Migraine Disorders/genetics , Mutation/genetics , Cortical Spreading Depression/physiology
2.
Function (Oxf) ; 5(1): zqad060, 2024.
Article in English | MEDLINE | ID: mdl-38020068

ABSTRACT

N-type calcium channels (CaV2.2) are predominantly localized in presynaptic terminals, and are particularly important for pain transmission in the spinal cord. Furthermore, they have multiple isoforms, conferred by alternatively spliced or cassette exons, which are differentially expressed. Here, we have examined alternatively spliced exon47 variants that encode a long or short C-terminus in human CaV2.2. In the Ensembl database, all short exon47-containing transcripts were associated with the absence of exon18a, therefore, we also examined the effect of inclusion or absence of exon18a, combinatorially with the exon47 splice variants. We found that long exon47, only in the additional presence of exon18a, results in CaV2.2 currents that have a 3.6-fold greater maximum conductance than the other three combinations. In contrast, cell-surface expression of CaV2.2 in both tsA-201 cells and hippocampal neurons is increased ∼4-fold by long exon47, relative to short exon47, in either the presence or the absence of exon18a. This surprising discrepancy between trafficking and function indicates that cell-surface expression is enhanced by long exon47, independently of exon18a. However, in the presence of long exon47, exon18a mediates an additional permissive effect on CaV2.2 gating. We also investigated the single-nucleotide polymorphism in exon47 that has been linked to schizophrenia and Parkinson's disease, which we found is only non-synonymous in the short exon47 C-terminal isoform, resulting in two minor alleles. This study highlights the importance of investigating the combinatorial effects of exon inclusion, rather than each in isolation, in order to increase our understanding of calcium channel function.


Subject(s)
Neurons , RNA Splicing , Humans , Neurons/metabolism , Calcium Channels, N-Type/genetics , Protein Isoforms/genetics , Exons/genetics
3.
J Physiol ; 602(3): 485-506, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38155373

ABSTRACT

Presynaptic voltage-gated Ca2+ channel (CaV ) subtype abundance at mammalian synapses regulates synaptic transmission in health and disease. In the mammalian central nervous system (CNS), most presynaptic terminals are CaV 2.1 dominant with a developmental reduction in CaV 2.2 and CaV 2.3 levels, and CaV 2 subtype levels are altered in various diseases. However, the molecular mechanisms controlling presynaptic CaV 2 subtype levels are largely unsolved. Because the CaV 2 α1  subunit cytoplasmic regions contain varying levels of sequence conservation, these regions are proposed to control presynaptic CaV 2 subtype preference and abundance. To investigate the potential role of these regions, we expressed chimeric CaV 2.1 α1  subunits containing swapped motifs with the CaV 2.2 and CaV 2.3 α1  subunit on a CaV 2.1/CaV 2.2 null background at the calyx of Held presynaptic terminals. We found that expression of CaV 2.1 α1  subunit chimeras containing the CaV 2.3 loop II-III region or cytoplasmic C-terminus (CT) resulted in a large reduction of presynaptic Ca2+ currents compared to the CaV 2.1 α1  subunit. However, the Ca2+ current sensitivity to the CaV 2.1 blocker agatoxin-IVA was the same between the chimeras and the CaV 2.1 α1  subunit. Additionally, we found no reduction in presynaptic Ca2+ currents with CaV 2.1/2.2 cytoplasmic CT chimeras. We conclude that the motifs in the CaV 2.1 loop II-III and CT do not individually regulate CaV 2.1 preference, although these motifs control CaV 2.1 levels and the CaV 2.3 CT contains motifs that negatively regulate presynaptic CaV 2.3 levels. We propose that the motifs controlling presynaptic CaV 2.1 preference are distinct from those regulating CaV 2.1 levels and may act synergistically to impact pathways regulating CaV 2.1 preference and abundance. KEY POINTS: Presynaptic CaV 2 subtype abundance regulates neuronal circuit properties, although the mechanisms regulating presynaptic CaV 2 subtype abundance and preference remain enigmatic. The CaV α1  subunit determines subtype and contains multiple motifs implicated in regulating presynaptic subtype abundance and preference. The CaV 2.1 α1  subunit domain II-III loop and cytoplasmic C-terminus are positive regulators of presynaptic CaV 2.1 abundance but do not regulate preference. The CaV 2.3 α1  subunit cytoplasmic C-terminus negatively regulates presynaptic CaV 2 subtype abundance but not preference, whereas the CaV 2.2 α1  subunit cytoplasmic C-terminus is not a key regulator of presynaptic CaV 2 subtype abundance or preference. The CaV 2 α1  subunit motifs determining the presynaptic CaV 2 preference are distinct from abundance.


Subject(s)
Calcium Channels, N-Type , Synaptic Transmission , Animals , Calcium Channels, N-Type/genetics , Synaptic Transmission/physiology , Synapses/physiology , Presynaptic Terminals/physiology , Neurons/metabolism , Mammals/metabolism
4.
Proc Natl Acad Sci U S A ; 120(47): e2305215120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37972067

ABSTRACT

Transmembrane Cav2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated, clinically relevant pain targets. Clinical block of Cav2.2 (e.g., with Prialt/Ziconotide) or indirect modulation [e.g., with gabapentinoids such as Gabapentin (GBP)] mitigates chronic pain but is encumbered by side effects and abuse liability. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Cav2.2 to the sensory neuron membrane and regulates their function via an intrinsically disordered motif. A CRMP2-derived peptide (CBD3) uncouples the Cav2.2-CRMP2 interaction to inhibit calcium influx, transmitter release, and pain. We developed and applied a molecular dynamics approach to identify the A1R2 dipeptide in CBD3 as the anchoring Cav2.2 motif and designed pharmacophore models to screen 27 million compounds on the open-access server ZincPharmer. Of 200 curated hits, 77 compounds were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons. Nine small molecules were tested electrophysiologically, while one (CBD3063) was also evaluated biochemically and behaviorally. CBD3063 uncoupled Cav2.2 from CRMP2, reduced membrane Cav2.2 expression and Ca2+ currents, decreased neurotransmission, reduced fiber photometry-based calcium responses in response to mechanical stimulation, and reversed neuropathic and inflammatory pain across sexes in two different species without changes in sensory, sedative, depressive, and cognitive behaviors. CBD3063 is a selective, first-in-class, CRMP2-based peptidomimetic small molecule, which allosterically regulates Cav2.2 to achieve analgesia and pain relief without negative side effect profiles. In summary, CBD3063 could potentially be a more effective alternative to GBP for pain relief.


Subject(s)
Chronic Pain , Peptidomimetics , Rats , Animals , Chronic Pain/drug therapy , Chronic Pain/metabolism , Rats, Sprague-Dawley , Peptidomimetics/pharmacology , Calcium/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Sensory Receptor Cells/metabolism , Ganglia, Spinal/metabolism
5.
Elife ; 112022 Nov 14.
Article in English | MEDLINE | ID: mdl-36374183

ABSTRACT

High-voltage-activated Ca2+ (CaV) channels that adjust Ca2+ influx upon membrane depolarization are differentially regulated by phosphatidylinositol 4,5-bisphosphate (PIP2) in an auxiliary CaV ß subunit-dependent manner. However, the molecular mechanism by which the ß subunits control the PIP2 sensitivity of CaV channels remains unclear. By engineering various α1B and ß constructs in tsA-201 cells, we reported that at least two PIP2-binding sites, including the polybasic residues at the C-terminal end of I-II loop and the binding pocket in S4II domain, exist in the CaV2.2 channels. Moreover, they were distinctly engaged in the regulation of channel gating depending on the coupled CaV ß2 subunits. The membrane-anchored ß subunit abolished the PIP2 interaction of the phospholipid-binding site in the I-II loop, leading to lower PIP2 sensitivity of CaV2.2 channels. By contrast, PIP2 interacted with the basic residues in the S4II domain of CaV2.2 channels regardless of ß2 isotype. Our data demonstrated that the anchoring properties of CaV ß2 subunits to the plasma membrane determine the biophysical states of CaV2.2 channels by regulating PIP2 coupling to the nonspecific phospholipid-binding site in the I-II loop.


Subject(s)
Calcium Channels, N-Type , Phosphatidylinositols , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Cell Membrane/metabolism , Phosphatidylinositols/metabolism , Binding Sites
6.
Mol Pharmacol ; 102(4): 196-208, 2022 10.
Article in English | MEDLINE | ID: mdl-35944919

ABSTRACT

The analgesic α-conotoxins Vc1.1, RgIA, and PeIA attenuate nociceptive transmission via activation of G protein-coupled GABAB receptors (GABABRs) to modulate N-type calcium channels in primary afferent neurons and recombinantly coexpressed human GABABR and Cav2.2 channels in human embryonic kidney 293T cells. Here, we investigate the effects of analgesic α-conotoxins following the mutation of amino acid residues in the Venus flytrap (VFT) domains of the GABABR subunits predicted through computational peptide docking and molecular dynamics simulations. Our docking calculations predicted that all three of the α-conotoxins form close contacts with VFT residues in both B1 and B2 subunits, comprising a novel GABABR ligand-binding site. The effects of baclofen and α-conotoxins on the peak Ba2+ current (IBa) amplitude were investigated on wild-type and 15 GABABR mutants individually coexpressed with human Cav2.2 channels. Mutations at the interface of the VFT domains of both GABABR subunits attenuated baclofen-sensitive IBa inhibition by the analgesic α-conotoxins. In contrast, mutations located outside the putative peptide-binding site (D380A and R98A) did not. The key GABABR residues involved in interactions with the α-conotoxins are K168 and R207 on the B2 subunit and S130, S153, R162, E200, F227, and E253 on the B1 subunit. The double mutant, S130A + S153A, abolished inhibition by both baclofen and the α-conotoxins. Depolarization-activated IBa mediated by both wild-type and all GABABR mutants were inhibited by the selective GABABR antagonist CGP 55845. This study identifies specific residues of GABABR involved in the binding of the analgesic α-conotoxins to the VFT domains of the GABABR. SIGNIFICANCE STATEMENT: This study defines the binding site of the analgesic α-conotoxins Vc1.1, RgIA, and PeIA on the human GABAB receptor to activate Gi/o proteins and inhibit Cav2.2 channels. Computational docking and molecular dynamics simulations of GABABR identified amino acids of the Venus flytrap (VFT) domains with which the α-conotoxins interact. GABABR alanine mutants attenuated baclofen-sensitive Cav2.2 inhibition by the α-conotoxins. We identify an allosteric binding site at the interface of the VFT domains of the GABABR subunits for the analgesic α-conotoxins.


Subject(s)
Conotoxins , Receptors, GABA-B , Alanine , Amino Acids , Analgesics/chemistry , Analgesics/pharmacology , Baclofen/pharmacology , Binding Sites , Calcium Channel Blockers/pharmacology , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Conotoxins/chemistry , Conotoxins/metabolism , Conotoxins/pharmacology , GABA Antagonists/pharmacology , GTP-Binding Proteins/metabolism , Humans , Ligands , Receptors, GABA-B/metabolism
7.
Methods Mol Biol ; 2537: 185-196, 2022.
Article in English | MEDLINE | ID: mdl-35895265

ABSTRACT

Defining the cell-specific alternative splicing landscape in complex tissues is an important goal to gain functional insights. Deep-sequencing techniques coupled to genetic strategies for cell identification has provided important cues on cell-specific exon usage in complex tissues like the nervous system. BaseScope™ has emerged as a powerful and highly sensitive alternative to in situ hybridization to determine exon composition in tissue with spatial and morphological context. In this protocol, we will review how BaseScope was utilized to detect the e37a-Cacna1b splice variant of the presynaptic calcium channel CaV2.2 or N-type. This splice variant arises from a pair of mutually exclusive exons (e37a and e37b). E37a-Cacna1b is heavily underrepresented relative to e37b-Cacna1b and both exons share 60% of their sequence. By using BaseScope™, we were able to discover that e37a-Cacna1b is expressed in excitatory pyramidal neurons of hippocampus and cortex, as well as motor neurons of the ventral horn of the spinal cord.


Subject(s)
Alternative Splicing , Calcium Channels, N-Type , Calcium Channels, N-Type/genetics , Exons , In Situ Hybridization , RNA, Messenger/genetics
8.
Medicine (Baltimore) ; 101(26): e29782, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35777045

ABSTRACT

For the diagnosis and prognosis of glioma, the development of prognostic biomarkers is critical. The N-type calcium channel, whose predominant subunit is encoded by calcium voltage-gated channel subunit alpha1 B (CACNA1B), is mostly found in the nervous system and is closely associated with neurosensory functions. However, the link between the expression of CACNA1B and glioma remains unknown. We used ONCOMINE to explore the differences in CACNA1B expression among different cancers. We then conducted survival analysis and COX analysis using TCGA_LGG and TCGA_GBM datasets, which were divided into CACNA1Bhigh and CACNA1Blow based on the median. We examined the differences in other favorable prognostic markers or clinical characteristics between CACNA1Bhigh and CACNA1Blow using t tests. Differentially expressed genes were identified, and KEGG pathway enrichment was performed. We compared the expression of methyltransferases and analyzed the differentially methylated regions. Immunohistochemistry results were retrieved from the Human Protein Atlas database for validation purposes. CACNA1B was expressed at lower levels in gliomas, and, for the first time, we found that high expression of CACNA1B in gliomas predicts a good prognosis. Other favorable prognostic markers, such as isocitrate dehydrogenase mutation, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase promoter methylation, were increased in tandem with high expression of CACNA1B. Differentially expressed genes were enriched in multiple pathways related to cancer progression and aberrant epigenetic alterations were significantly associated with CACNA1B. High expression of N-type calcium channels indicates a favorable prognosis for gliomas. This study provides a better understanding of the link between gliomas and N-type calcium channels and may offer guidance for the future treatment of gliomas.


Subject(s)
Brain Neoplasms , Calcium Channels, N-Type , Glioma , Brain Neoplasms/genetics , Calcium Channels, N-Type/genetics , Glioma/diagnosis , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Prognosis
9.
Function (Oxf) ; 3(3): zqac013, 2022.
Article in English | MEDLINE | ID: mdl-35462614

ABSTRACT

The auxiliary α2δ subunits of voltage-gated calcium (CaV) channels are key to augmenting expression and function of CaV1 and CaV2 channels, and are also important drug targets in several therapeutic areas, including neuropathic pain. The α2δ proteins are translated as preproteins encoding both α2 and δ, and post-translationally proteolyzed into α2 and δ subunits, which remain associated as a complex. In this study, we have identified ADAM17 as a key protease involved in proteolytic processing of pro-α2δ-1 and α2δ-3 subunits. We provide three lines of evidence: First, proteolytic cleavage is inhibited by chemical inhibitors of particular metalloproteases, including ADAM17. Second, proteolytic cleavage of both α2δ-1 and α2δ-3 is markedly reduced in cell lines by knockout of ADAM17 but not ADAM10. Third, proteolytic cleavage is reduced by the N-terminal active domain of TIMP-3 (N-TIMP-3), which selectively inhibits ADAM17. We have found previously that proteolytic cleavage into mature α2δ is essential for the enhancement of CaV function, and in agreement, knockout of ADAM17 inhibited the ability of α2δ-1 to enhance both CaV2.2 and CaV1.2 calcium currents. Finally, our data also indicate that the main site of proteolytic cleavage of α2δ-1 is the Golgi apparatus, although cleavage may also occur at the plasma membrane. Thus, our study identifies ADAM17 as a key protease required for proteolytic maturation of α2δ-1 and α2δ-3, and thus a potential drug target in neuropathic pain.


Subject(s)
Neuralgia , Tissue Inhibitor of Metalloproteinase-3 , Humans , Tissue Inhibitor of Metalloproteinase-3/metabolism , Calcium Channels, N-Type/genetics , Proteolysis , Calcium, Dietary/metabolism , Peptide Hydrolases/metabolism , ADAM17 Protein/genetics
10.
Pflugers Arch ; 474(4): 435-445, 2022 04.
Article in English | MEDLINE | ID: mdl-35267086

ABSTRACT

CaV2.3 channels are subthreshold voltage-gated calcium channels that play crucial roles in neurotransmitter release and regulation of membrane excitability, yet modulation of these channels with endogenous molecules and their role in pain processing is not well studied. Here, we hypothesized that an endogenous amino acid l-cysteine could be a modulator of these channels and may affect pain processing in mice. To test this hypothesis, we employed conventional patch-clamp technique in the whole-cell configuration using recombinant CaV2.3 subunit stably expressed in human embryonic kidney (HEK-293) cells. We found in our in vitro experiments that l-cysteine facilitated gating and increased the amplitudes of recombinant CaV2.3 currents likely by chelating trace metals that tonically inhibit the channel. In addition, we took advantage of mouse genetics in vivo using the acetic acid visceral pain model that was performed on wildtype and homozygous Cacna1e knockout male littermates. In ensuing in vivo experiments, we found that l-cysteine administered both subcutaneously and intraperitoneally evoked more prominent pain responses in the wildtype mice, while the effect was completely abolished in knockout mice. Conversely, intrathecal administration of l-cysteine lowered visceral pain response in the wildtype mice, and again the effect was completely abolished in the knockout mice. Our study strongly suggests that l-cysteine-mediated modulation of CaV2.3 channels plays an important role in visceral pain processing. Furthermore, our data are consistent with the contrasting roles of CaV2.3 channels in mediating visceral nociception in the peripheral and central pain pathways.


Subject(s)
Calcium Channels, R-Type , Cation Transport Proteins , Animals , Calcium/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Cation Transport Proteins/metabolism , Cysteine , HEK293 Cells , Humans , Male , Mice , Nociception
11.
Elife ; 112022 03 03.
Article in English | MEDLINE | ID: mdl-35238776

ABSTRACT

Patients suffering from familial hemiplegic migraine type 1 (FHM1) may have a disproportionally severe outcome after head trauma, but the underlying mechanisms are unclear. Hence, we subjected knock-in mice carrying the severer S218L or milder R192Q FHM1 gain-of-function missense mutation in the CACNA1A gene that encodes the α1A subunit of neuronal voltage-gated CaV2.1 (P/Q-type) calcium channels and their wild-type (WT) littermates to experimental traumatic brain injury (TBI) by controlled cortical impact and investigated cortical spreading depolarizations (CSDs), lesion volume, brain edema formation, and functional outcome. After TBI, all mutant mice displayed considerably more CSDs and seizures than WT mice, while S218L mutant mice had a substantially higher mortality. Brain edema formation and the resulting increase in intracranial pressure were more pronounced in mutant mice, while only S218L mutant mice had larger lesion volumes and worse functional outcome. Here, we show that gain of CaV2.1 channel function worsens histopathological and functional outcome after TBI in mice. This phenotype was associated with a higher number of CSDs, increased seizure activity, and more pronounced brain edema formation. Hence, our results suggest increased susceptibility for CSDs and seizures as potential mechanisms for bad outcome after TBI in FHM1 mutation carriers.


Subject(s)
Brain Edema , Brain Injuries, Traumatic , Migraine with Aura , Animals , Brain Edema/genetics , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/genetics , Calcium Channels, N-Type/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Migraine with Aura/genetics , Mutation , Seizures/genetics
12.
Naunyn Schmiedebergs Arch Pharmacol ; 395(4): 459-470, 2022 04.
Article in English | MEDLINE | ID: mdl-35122502

ABSTRACT

Voltage-gated calcium channel (VGCC) subunits have been genetically associated with autism spectrum disorders (ASD). The properties of the pore-forming VGCC subunit are modulated by auxiliary ß-subunits, which exist in four isoforms (CaVß1-4). Our previous findings suggested that activation of L-type VGCCs is a common feature of CaVß2 subunit mutations found in ASD patients. In the current study, we functionally characterized a novel CaVß1b variant (p.R296C) identified in an ASD patient. We used whole-cell and single-channel patch clamp to study the effect of CaVß1b_R296C on the function of L- and N-type VGCCs. Furthermore, we used co-immunoprecipitation followed by Western blot to evaluate the interaction of the CaVß1b-subunits with the RGK-protein Gem. Our data obtained at both, whole-cell and single-channel levels, show that compared to a wild-type CaVß1b, the CaVß1b_R296C variant inhibits L- and N-type VGCCs. Interaction with and modulation by the RGK-protein Gem seems to be intact. Our findings indicate functional effects of the CaVß1b_R296C variant differing from that attributed to CaVß2 variants found in ASD patients. Further studies have to detail the effects on different VGCC subtypes and on VGCC expression.


Subject(s)
Autism Spectrum Disorder , Calcium Channels, L-Type , Calcium Channels, N-Type , Autism Spectrum Disorder/genetics , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Humans
13.
Cell Rep ; 37(5): 109931, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731621

ABSTRACT

N-type voltage-gated calcium (CaV) channels mediate Ca2+ influx at presynaptic terminals in response to action potentials and play vital roles in synaptogenesis, release of neurotransmitters, and nociceptive transmission. Here, we elucidate a cryo-electron microscopy (cryo-EM) structure of the human CaV2.2 complex in apo, ziconotide-bound, and two CaV2.2-specific pore blockers-bound states. The second voltage-sensing domain (VSD) is captured in a resting-state conformation, trapped by a phosphatidylinositol 4,5-bisphosphate (PIP2) molecule, which is distinct from the other three VSDs of CaV2.2, as well as activated VSDs observed in previous structures of CaV channels. This structure reveals the molecular basis for the unique inactivation process of CaV2.2 channels, in which the intracellular gate formed by S6 helices is closed and a W-helix from the domain II-III linker stabilizes closed-state inactivation. The structures of this inactivated, drug-bound complex lay a solid foundation for developing new state-dependent blockers for treatment of chronic pain.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, N-Type/drug effects , Dipeptides/pharmacology , Ion Channel Gating/drug effects , omega-Conotoxins/pharmacology , Action Potentials , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Calcium Channels, N-Type/ultrastructure , Calcium Signaling , Cryoelectron Microscopy , HEK293 Cells , Humans , Models, Molecular , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Conformation, alpha-Helical , Structure-Activity Relationship
14.
Orphanet J Rare Dis ; 16(1): 461, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34727962

ABSTRACT

BACKGROUND: Epilepsy is a neurological disorder characterized by the potential to induce seizure and accompanied by cognitive, psychological, and social consequences. CACNA1A gene is a voltage-gated P/Q-type Cav2.1 channel that is broadly expressed in the central nervous system, and the pathogenic variants within this gene may be associated with the epileptic phenotype. In the present study, we collected clinical and molecular data related to epileptic patients with CACNA1A pathogenic variants and investigated possible meaningful relationship between age at onset, neurodevelopmental disorders, type of seizures, brain imaging abnormalities, genotype, and protein domains. RESULTS: In our retrospective literature studies, from among 890 articles reviewed, a total of 90 individuals were related to epilepsy phenotype. Our findings showed that about 90 percent of patients have shown the first symptoms in childhood and teenage years and different types of neurodevelopmental disorders, such as intellectual disability, developmental arrest, and behavioral disorders, have been common findings for these patients. Further, a wide range of abnormalities have been observed in their brain imaging, and generalized seizures have been the most type of seizures in these patients. However, our data showed no specific genotype-phenotype correlation in epileptic patients with CACNA1A pathogenic alterations. CONCLUSIONS: Our study focused on epileptic phenotype in patients with CACNA1A pathogenic variants and showed a wide range of clinical and molecular heterogeneity with no specific genotype-phenotype correlation. It seems that incomplete penetrance, de-novo variants, and modifier genes are obstacles in predicting the clinical outcome.


Subject(s)
Calcium Channels, Q-Type , Calcium Channels/genetics , Epilepsy , Adolescent , Calcium Channels, N-Type/genetics , Epilepsy/genetics , Humans , Retrospective Studies
15.
PLoS One ; 16(8): e0255656, 2021.
Article in English | MEDLINE | ID: mdl-34343209

ABSTRACT

Although quiescent hepatic stellate cells (HSCs) have been suggested to regulate hepatic blood flow, there is no direct evidence that quiescent HSCs display contractile abilities. Here, we developed a new method to quantitatively measure the contraction of single isolated HSCs and evaluated whether endothelin-1 (ET-1) induced contraction of HSCs in a non-activated state. HSCs isolated from mice were seeded on collagen gel containing fluorescent beads. The beads around a single HSC were observed gravitating toward the cell upon contraction. By recording the movement of each bead by fluorescent microscopy, the real-time contraction of HSCs was quantitatively evaluated. ET-1 induced a slow contraction of non-activated HSCs, which was inhibited by the non-muscle myosin II inhibitor blebbistatin, the calmodulin inhibitor W-7, and the ETA receptor antagonist ambrisentan. ET-1-induced contraction was also largely reduced in Ca2+-free conditions, but sustained contraction still remained. The tonic contraction was further diminished by the Rho-kinase inhibitor H-1152. The mRNA expression of P/Q-type voltage-dependent Ca2+ channels (VDCC), as well as STIM and Orai, constituents of store-operated channels (SOCs), was observed in mouse non-activated HSCs. ET-1-induced contraction was not affected by amlodipine, a VDCC blocker, whereas it was partly reduced by Gd3+ and amiloride, non-selective cation channel blockers. However, neither YM-58483 nor SKF-96365, which inhibit SOCs, had any effects on the contraction. These results suggest that ET-1 leads to Ca2+-influx through cation channels other than SOCs and produces myosin II-mediated contraction of non-activated HSCs via ETA receptors, as well as via mechanisms involving Ca2+-calmodulin and Rho kinase.


Subject(s)
Cell Physiological Phenomena/drug effects , Endothelin-1/pharmacology , Hepatic Stellate Cells/metabolism , Signal Transduction/drug effects , Animals , Calcium/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Calmodulin/antagonists & inhibitors , Calmodulin/metabolism , Cells, Cultured , Endothelin Receptor Antagonists/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Male , Mice , Myosin Type II/antagonists & inhibitors , Myosin Type II/metabolism , Phenylpropionates/pharmacology , Pyridazines/pharmacology , RNA, Messenger/genetics , Receptor, Endothelin A/metabolism , Sulfonamides/pharmacology , rho-Associated Kinases/metabolism
16.
Sci Rep ; 11(1): 10256, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986433

ABSTRACT

N-type voltage-gated calcium channels (CaV2.2) are predominantly expressed at presynaptic terminals, and their function is regulated by auxiliary α2δ and ß subunits. All four mammalian α2δ subunits enhance calcium currents through CaV1 and CaV2 channels, and this increase is attributed, in part, to increased CaV expression at the plasma membrane. In the present study we provide evidence that α2δ-1, like α2δ-2, is recycled to the plasma membrane through a Rab11a-dependent endosomal recycling pathway. Using a dominant-negative Rab11a mutant, Rab11a(S25N), we show that α2δ-1 increases plasma membrane CaV2.2 expression by increasing the rate and extent of net forward CaV2.2 trafficking in a Rab11a-dependent manner. Dominant-negative Rab11a also reduces the ability of α2δ-1 to increase CaV2.2 expression on the cell-surface of hippocampal neurites. In contrast, α2δ-3 does not enhance rapid forward CaV2.2 trafficking, regardless of whether Rab11a(S25N) is present. In addition, whole-cell CaV2.2 currents are reduced by co-expression of Rab11a(S25N) in the presence of α2δ-1, but not α2δ-3. Taken together these data suggest that α2δ subtypes participate in distinct trafficking pathways which in turn influence the localisation and function of CaV2.2.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Channels/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Brain/metabolism , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/physiology , Calcium Channels, L-Type/genetics , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Cell Line , Cell Membrane/metabolism , Cyclohexanecarboxylic Acids/metabolism , Gabapentin/metabolism , Hippocampus/metabolism , Neurites/metabolism , Neurons/metabolism , Presynaptic Terminals/metabolism , Primary Cell Culture , Protein Transport , Rats , gamma-Aminobutyric Acid/metabolism , rab GTP-Binding Proteins/genetics
17.
Int J Mol Sci ; 22(5)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33799975

ABSTRACT

Migraine is a common neurological disease that affects about 11% of the adult population. The disease is divided into two main clinical subtypes: migraine with aura and migraine without aura. According to the neurovascular theory of migraine, the activation of the trigeminovascular system (TGVS) and the release of numerous neuropeptides, including calcitonin gene-related peptide (CGRP) are involved in headache pathogenesis. TGVS can be activated by cortical spreading depression (CSD), a phenomenon responsible for the aura. The mechanism of CSD, stemming in part from aberrant interactions between neurons and glia have been studied in models of familial hemiplegic migraine (FHM), a rare monogenic form of migraine with aura. The present review focuses on those interactions, especially as seen in FHM type 1, a variant of the disease caused by a mutation in CACNA1A, which encodes the α1A subunit of the P/Q-type voltage-gated calcium channel.


Subject(s)
Calcium Channels/metabolism , Migraine Disorders/etiology , Neuroglia/pathology , Calcitonin Gene-Related Peptide/metabolism , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels, N-Type/chemistry , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Humans , Migraine Disorders/drug therapy , Migraine Disorders/physiopathology , Mutation , Neuroglia/metabolism
18.
PLoS One ; 16(3): e0243645, 2021.
Article in English | MEDLINE | ID: mdl-33667217

ABSTRACT

Chemical transfection is broadly used to transiently transfect mammalian cells, although often associated with cellular stress and membrane instability, which imposes challenges for most cellular assays, including high-throughput (HT) assays. In the current study, we compared the effectiveness of calcium phosphate, FuGENE and Lipofectamine 3000 to transiently express two key voltage-gated ion channels critical in pain pathways, CaV2.2 and NaV1.7. The expression and function of these channels were validated using two HT platforms, the Fluorescence Imaging Plate Reader FLIPRTetra and the automated patch clamp QPatch 16X. We found that all transfection methods tested demonstrated similar effectiveness when applied to FLIPRTetra assays. Lipofectamine 3000-mediated transfection produced the largest peak currents for automated patch clamp QPatch assays. However, the FuGENE-mediated transfection was the most effective for QPatch assays as indicated by the superior number of cells displaying GΩ seal formation in whole-cell patch clamp configuration, medium to large peak currents, and higher rates of accomplished assays for both CaV2.2 and NaV1.7 channels. Our findings can facilitate the development of HT automated patch clamp assays for the discovery and characterization of novel analgesics and modulators of pain pathways, as well as assisting studies examining the pharmacology of mutated channels.


Subject(s)
Calcium Channels, N-Type/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics , Transfection/methods , Action Potentials/drug effects , Analgesics/pharmacology , Animals , CHO Cells , Calcium Channels, N-Type/metabolism , Cricetinae , Cricetulus , HEK293 Cells , High-Throughput Screening Assays , Humans , Microscopy, Fluorescence , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/metabolism , Pain/pathology , Patch-Clamp Techniques
19.
Mol Brain ; 14(1): 27, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33557884

ABSTRACT

CACNA1A pathogenic variants have been linked to several neurological disorders including familial hemiplegic migraine and cerebellar conditions. More recently, de novo variants have been associated with severe early onset developmental encephalopathies. CACNA1A is highly expressed in the central nervous system and encodes the pore-forming CaVα1 subunit of P/Q-type (Cav2.1) calcium channels. We have previously identified a patient with a de novo missense mutation in CACNA1A (p.Y1384C), characterized by hemiplegic migraine, cerebellar atrophy and developmental delay. The mutation is located at the transmembrane S5 segment of the third domain. Functional analysis in two predominant splice variants of the neuronal Cav2.1 channel showed a significant loss of function in current density and changes in gating properties. Moreover, Y1384 variants exhibit differential splice variant-specific effects on recovery from inactivation. Finally, structural analysis revealed structural damage caused by the tyrosine substitution and changes in electrostatic potentials.


Subject(s)
Calcium Channels, N-Type/genetics , Cerebellum/pathology , Developmental Disabilities/genetics , Genetic Predisposition to Disease , Migraine with Aura/genetics , Mutation/genetics , Adolescent , Adult , Alternative Splicing/genetics , Atrophy , Biophysical Phenomena , Calcium Channels, N-Type/chemistry , Calcium Channels, N-Type/metabolism , Cell Line , Child, Preschool , Developmental Disabilities/complications , Female , Humans , Infant, Newborn , Ion Channel Gating , Male , Migraine with Aura/complications , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Isoforms/genetics , Protein Structure, Secondary , Structural Homology, Protein
20.
J Biol Chem ; 296: 100302, 2021.
Article in English | MEDLINE | ID: mdl-33465376

ABSTRACT

3,4-Diaminopyridine (3,4-DAP) increases transmitter release from neuromuscular junctions (NMJs), and low doses of 3,4-DAP (estimated to reach ∼1 µM in serum) are the Food and Drug Administration (FDA)-approved treatment for neuromuscular weakness caused by Lambert-Eaton myasthenic syndrome. Canonically, 3,4-DAP is thought to block voltage-gated potassium (Kv) channels, resulting in prolongation of the presynaptic action potential (AP). However, recent reports have shown that low millimolar concentrations of 3,4-DAP have an off-target agonist effect on the Cav1 subtype ("L-type") of voltage-gated calcium (Cav) channels and have speculated that this agonist effect might contribute to 3,4-DAP effects on transmitter release at the NMJ. To address 3,4-DAP's mechanism(s) of action, we first used the patch-clamp electrophysiology to characterize the concentration-dependent block of 3,4-DAP on the predominant presynaptic Kv channel subtypes found at the mammalian NMJ (Kv3.3 and Kv3.4). We identified a previously unreported high-affinity (1-10 µM) partial antagonist effect of 3,4-DAP in addition to the well-known low-affinity (0.1-1 mM) antagonist activity. We also showed that 1.5-µM DAP had no effects on Cav1.2 or Cav2.1 current. Next, we used voltage imaging to show that 1.5- or 100-µM 3,4-DAP broadened the AP waveform in a dose-dependent manner, independent of Cav1 calcium channels. Finally, we demonstrated that 1.5- or 100-µM 3,4-DAP augmented transmitter release in a dose-dependent manner and this effect was also independent of Cav1 channels. From these results, we conclude that low micromolar concentrations of 3,4-DAP act solely on Kv channels to mediate AP broadening and enhance transmitter release at the NMJ.


Subject(s)
Amifampridine/pharmacology , Neuromuscular Agents/pharmacology , Neuromuscular Junction/drug effects , Potassium Channel Blockers/pharmacology , Presynaptic Terminals/drug effects , Shaw Potassium Channels/metabolism , Acetylcholine/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression , Male , Mice , Microelectrodes , Neuromuscular Junction/metabolism , Presynaptic Terminals/metabolism , Rana pipiens , Shaw Potassium Channels/antagonists & inhibitors , Shaw Potassium Channels/genetics , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...